Substitute or complement? Defining the relative place of EEG and fMRI in the detection of voluntary brain reactions.
نویسندگان
چکیده
To improve the assessment of awareness in patients with disorders of consciousness, recent protocols using functional Magnetic Resonance Imaging (fMRI) have been developed, and led some specialized coma centers to use this method on a routine basis. Recently, promising results have also been observed with electroencephalography (EEG), a less expensive and widely available technique. However, since the spatiotemporal nature of the recorded signal differs between both EEG and fMRI, the question of whether one method could substitute or should complement the other method is a matter of debate. In this study, we compared the neural processes of two well-known EEG and fMRI mental imagery protocols to define the relative place of each method in the assessment of awareness. A group of 20 healthy volunteers performed both EEG and fMRI command-following and communication tasks. Distinct command following was found with both EEG and fMRI for five subjects, only with fMRI for 12 subjects, and only with EEG for one subject. In the communication task, neither EEG nor fMRI alone gave satisfactory results and no reliable communication could be established in approximately 1/3rd of the participants. If fMRI showed the best performance to detect volitional reactions in mental imagery tasks, our results provide evidence that the use of EEG must not be underestimated since a better detection was found with this method for at least one subject. More than being used as a substitute, EEG should complement fMRI to improve the detection of sign of awareness, and to reduce the risks of misjudgments.
منابع مشابه
Can Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?
Objective: In this research, a new approach termed as “evolutionary-based brain map†is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) features.Methods: Particle swarm optimization (PSO) is employed to find discriminative frequency bands from different EEG channels. By deploying the energy of those selected fr...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملDoes Muscle Fatigue Alter EEG Bands of Brain Hemispheres?
Background: Muscle fatigue has been known to influence brain activity, but very little is known about how cortical centers respond to muscle fatigue.Objective: This study was conducted to investigate the effects of muscle contraction and fatigue induced by two different percents of maximal voluntary contraction (MVC) on Electroencephalography (EEG) signals.Material and Methods: In t...
متن کاملIntegrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors
Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...
متن کاملApplication of modified balanced iterative reducing and clustering using hierarchies algorithm in parceling of brain performance using fMRI data
Introduction: Clustering of human brain is a very useful tool for diagnosis, treatment, and tracking of brain tumors. There are several methods in this category in order to do this. In this study, modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) was introduced for brain activation clustering. This algorithm has an appropriate speed and good scalability in dealing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 290 شماره
صفحات -
تاریخ انتشار 2015